
An Exploration Tool for Predicting Stealthy Behaviour
Jonathan Tremblay∗, Pedro Andrade Torres∗, Nir Rikovitch† and Clark Verbrugge∗

∗School of Computer Science †Department of Mechanical Engineering
McGill University McGill University

Montréal, Québec, Canada Montréal, Québec, Canada
jtremblay@cs.mcgill.ca nir.rikovitch@mail.mcgill.ca

pedro.torres@mail.mcgill.ca
clump@cs.mcgill.ca

Abstract

Stealthy movement is an important part of many games in the
First Person Shooter (FPS) and Role Playing Games (RPG)
genres. Structuring a game level to match stealth goals, how-
ever, is difficult, and can depend on subtle and fragile inter-
actions between the game space, enemy motion, and other
factors. Here we apply a probabilistic path-finding approach
to efficiently analyze a 2D space and find stealthy paths. This
approach naturally accommodates variation in the level de-
sign, numbers and movements of enemies, fields of view, and
player start and goal placement. Our design is integrated di-
rectly into the Unity 3D game development framework, al-
lowing for interactive and highly dynamic exploration of how
different virtual spaces and enemy configurations affect the
potential for stealthly movement by players, or other NPCs.

Introduction
Stealthly movement is a critical component of gameplay
for many games. With respect to players, the existence of
stealth-based approaches provides variety and further strate-
gic choices in approaching combat. NPCs also benefit from
understanding stealth, as failure to recognize and follow a
player’s sneaking behaviour can either interfere with player
strategy by accidentally inducing combat (a frequent prob-
lem in Skyrim (Bethesda Game Studios 2011)), or result
in immersion–breaking visual artifacts as enemies fail to
acknowledge overtly non-stealthy NPC movements when
the player enters stealth mode (such as in The Last of
Us (Naughty Dog 2013)).

Ensuring an interaction scenario is amenable to stealthy
movement, however, is quite difficult. The existence of
movement paths appropriate for sneaking depends on the
complex interplay between enemy senses, enemy place-
ments and movements, the location and occlusions provided
by virtual objects, and player starting and goal states. Tools
which allow for interactive exploration of how the poten-
tial for stealth is affected as these factors are modified thus
have obvious value, enabling better level design and pro-
viding trace data or online mechanisms for improving NPC
behaviours when they accompany a sneaking player.

In this work we design, implement, and test a tool for vi-
sualizing and exploring stealth paths in a 2D game level.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our design is based on known AI techniques, tailored for
efficiency, and adapted to the specific task of interactively
understanding sneaking behaviours. By integrating our tool
into Unity 3D (Unity Technologies 2013), a full featured,
industry relevant tool for game development, we enable effi-
cient exploration during the game design phase, accelerating
the process of prototyping and early-stage verification (Nel-
son and Mateas 2009).

We verify our efforts on two non-trivial examples, as well
as detailed performance analysis. The first example is moti-
vated by industry discussion of basic idioms in sneaking de-
sign (Smith 2006), and demonstrates the complexity of even
these simple interactions. A second example tests a more in-
volved context, reproducing a level design from Metal Gear
Solid (MGS) (Konami Digital Entertainment 1998), and is
intended to show our tool design scales to realistic contexts.

Background & Related Work
Use of stealth in games can be inherent to the game design,
although it is more typically part of a separate, but coexisting
form of gameplay with a distinct movement and interaction
model (i.e., a separate stealth mode). In either case a stealth
game (or level) is simply defined in terms of presenting a
challenge for the player to get from one location to another,
while avoiding detection by static and mobile enemies.

The challenge of being stealthy can then be mitigated
through different game mechanics. In-game tools may be
provided to the player to aid in sneaking, such as use of
the cardboard box in the Metal Gear Solid (MGS) series,
arrows in the Thief series (Looking Glass Studios 1998),
as well as special abilities, such as teleportation in Dishon-
ored (Arkane Studios 2012). Gameplay and challenge may
also be influenced by environmental factors: snow may leave
visible movement traces, metal floors or loose objects can be
noisy on contact, and light or shade may alter visibility pos-
itively or negatively. When designing a level a designer has
to take these variables into consideration, and combine them
with the basic properties of enemy position and movement
and detection abilities in order to build the right experience.
Smith defines a level to be stealth friendly if the in-game
tools that reduce detection are greater than the environmen-
tal challenges that increase it (Smith 2006).

Stealth is also encountered as part of normal combat
preparation, where players seek to scout out the environ-



ment in order to gain knowledge about enemy movements
and placements. This usage constitutes less of a stealth game
in itself, but does not change the main techniques involved.

Level Design Tools - Our approach in this work is to de-
velop a tool to assist in stealth level design. Tool develop-
ment is of course an important and large aspect of game re-
search and development, and at its highest level includes full
frameworks, such as UDK (Epic Games 2008) and Unity 3D
(Unity Technologies 2013). Here we are interested specifi-
cally in tools that help the designer understand his or her de-
signs. These kinds of tools use AI techniques that focus on
how the inner structure of the game operates and structures
the play experience.

A number of other tool-oriented approaches have been
described or developed that aim at extracting knowledge
from game artefacts or properties in order to better under-
stand the resulting gameplay (Nelson 2011). Shi and Craw-
fis, for example, presented a design tool that computes met-
rics on the optimal path a player may find to get through
a level, given obstacles and enemy distribution (Shi and
Crawfis 2013). They looked at the minimum damage cover,
longest path and standard deviation of cover points. For
RTS games, more general terrain metrics are also germane.
Perkins’ Broodwar Terrain Analyzer showed a map decom-
position approach which allowed one to determine strate-
gically important choke points (Perkins 2010), and Reddad
and Verbrugge compute geometric centrality and coverage
measures in order to better understand map quality (Reddad
and Verbrugge 2012).

Tools that specifically facilitate design have also been de-
veloped. Liapis et al. presented a tool where designers could
sketch levels using a high-level terrain editor (Liapis, Yan-
nakakis, and Togelius 2013). Given a map, the tool out-
puts metrics such as playability, balance, choke points, etc.;
the tool also included suggestions for map improvements
based on a genetic algorithm approach that tries to produce
playable maps. Tools that let the users enter a schematic for
a level are presented as computational caricature tools by
Smith and Mateas (Smith and Mateas 2011). Bauer et al.
presented an extension of such caricature tool by letting it
redesign the space of a level based on constraints given by
the designer (Bauer, Cooper, and Zoran Popović ). Their al-
gorithm minimized an objective function subject to some set
of constraints.

To the best of our knowledge no academic work has been
done on specifically on sneaking AI in games. Outside of a
game context, however, and particularly for military appli-
cations, stealth has been considered. Bortoff, for instance,
describes an Unmanned Aerial Vehicle (UAV) design that
avoids detection from radar (Bortoff 2000). His 2-step ap-
proach assumes non-moving enemies (radar), refining an
initial path using a force-based solution expressed as a set
of ODEs. Such continuous and real-world solutions are in-
formative, although too computationally expensive for inter-
active use in games.

Tool Design
This section explores the workflow of the presented tool,
the different technologies it uses, the different ways the user

can visualize the results and how the interface is designed.
The input is defined by a designed level that includes ene-
mies with predetermined movements (routes), different ge-
ometries that block movement and/or enemy vision, and the
player’s initial position and goal. The tool then outputs a
map with (clustered) possible paths a player could take to
avoid detection.

We first describe the process that leads to this result. This
requires discretization of the space, a pathfinding algorithm
to compute sneaking paths, and a clustering approach to
summarize results. This theoretical discussion is followed
by description of interface itself, as an important part of the
tool design.

Pre Computing - In order to find different paths a player
could take we need a formal model of the game state.
Enemy movements are assumed deterministic but possibly
non-linear and non-continuous, and their vision is a func-
tion of obstacles and their orientation. Discretization of this
space allows us to more easily model the game state as a
function of time, and we thus compute the world state at dif-
ferent times, t, based on constant intervals. This gives us a
3D space to explore in order to find paths, as an extrusion of
the 2D game level through time. Enemy vision is calculated
using ray-cast methods (Vandevenne 2007), and this allows
the tool to define enemy vision (FoV) at each point in time.

Rapidly Exploring Random Tree - We decided to use
an Rapidly exploring Random Tree (RRT) for pathfinding
through our discretized space, as it offers a flexible and inex-
pensive way to explore a state space. The random behaviour
of the algorithm also allows the tool to easily represent a
greater range of player behaviours. Here we describe the
general motion planning problem for an RRT algorithm. Our
game context does not require this full generality, but a gen-
eral formulation enables further extension of our work.

The General RRT Algorithm - Initially presented by
Kuffner and LaValle (LaValle and Kuffner, Jr 1999), RRT is
an incremental, sampling-based, single-query motion plan-
ner for holonomic systems. The RRT has proved extremely
useful in exploring configuration spaces and ultimately gen-
erating trajectories for robotic systems, with some recent ap-
plications in games (Bauer and Popović 2012).

In order to properly define the problem let χ ⊆ Rd be the
state space of dimensionality d where the elements of χ are
known as states denoted as x. The space occupied with ob-
stacles is χobs leaving the rest of the space free χfree. A path
σ ∈ χ is a continuous function σ(t) = (x, t) connecting
two states. It is said to be free iff σ ∈ χfree and feasible if
in addition it satisfies the system’s kinematic/dynamic con-
straints.

Given an initial state xinit at t0 and a goal region χgoal,
the motion planning problem deals with finding a feasible,
collision-free path connecting the initial state to the goal re-
gion. The feasibility of the path σ is determined by not only
residing in the free space but also governed by the dynami-
cal/kinematic model of the system.

The RRT in algorithm 1 involves five main components
and each can be encapsulated into a function or procedure
as follows:



• Problem Specifications - A state space representation
in which an initial state is used as the root node
and finally a goal region. In this paper, we define the
state space as χ = {x = (x, y, t);x, y ∈ R; t > 0}.
Since the time it takes to transverse a candidate tra-
jectory is unknown the goal region is extended from
a circle of radius rgoal centred at [µx, µy] in 2D
to an infinite cylinder. Formally defined as χgoal ={
x ∈ χ;

√
(x− µx)2 + (y − µy)2 < rgoal; t > 0

}
.

• Sample - When invoked, the sampling procedure returns a
sampled state x ∈ χfree from a random distribution (uni-
form, normal with the goal as mean, or any other pseu-
dorandom sequence as the designer chooses). A uniform
sampling scheme in all dimensions is used in our work.

• Steer - Given two states x1,x2 ∈ χfree the steer proce-
dure attempts to connect these two states. Depending on
the specific design, it either returns a boolean indicating
connection success and/or a path segment σ ∈ χ such that
σ(0) = x1 but not necessarily terminating at x2. In our
case we use a simple straight line in the Euclidean sense
for connecting the two states.

• Collision Check - Given a path σ ∈ χ or state x ∈ χ
this procedure returns a boolean true iff σ or x is within
χfree in its entirety; that is x ∈ χfree. Essentially, the colli-
sion detection module is merely a “black-box” invoked by
the algorithm. In our work, apart from checking collision
with the obstacles (static and enemy FoVs) a kinematic
constraint of maximal velocity is introduced and formu-
lated as:

VelocityOK(v) =

{
false : v ≥ Vmax
true : else

v(x1,x2) =

√
(x2 − x1)2 + (y2 − y1)2

t2 − t1

(1)

• Metric - A metric (or a pseudometric) is a function D :
(x1,x2) → R≥0 that returns a scalar standing for the
“distance” between the two states. For the sake of sim-
plicity, we model the player with no dynamic constraints,
although these can be easily incorporated as discussed in
the conclusion. A simple straight line segment connect-
ing two states suffices to represent a path segment along
which the player can progress, giving usD as below. Note
that only states with larger a time stamp than their parent
states can be added to the tree (we require t2 > t1).

D(x1,x2) =
√

(x2 − x1)2 + (y2 − y1)2 + (t2 − t1)2

• Nearest Neighbours - Given a subset of states V ⊆ χ and
a state x ∈ χ, the K nearest neighbours (KNN) routine
returns a subset V near ⊆ V of the nearest neighbours to
x with respect to the metricD. We implemented a k-d tree
in order to improve performance of the nearest neighbours
search (Berchtold et al. 2001).

In general, our implementation follows the algorithm 1
pseudo-code. The algorithm outputs solution paths σ ∈ χ
connecting xinit to χgoal. To shorten the time until a solution

Algorithm 1 Path Finding
1: procedure COMPPATHS(xinit,χgoal,χfree,N ,M )
2: Initialize(T, xinit,Σ )
3: while i ≤M do
4: while j ≤ N do
5: xrand ← Sample(χfree)
6: xnear ← KNN(xrand,T)
7: [xnew, σ]← Steer(xnear, xrand)
8: if CollisionFree(σ, χfree) then
9: T.edges← Tedges ∪ σ

10: T.vertices← Tvertices ∪ xnew

11: if σ.last ∈ χgoal then
12: Σ← σ
13: break
14: end if
15: end if
16: end while
17: end while
18: end procedure

path is found, instead of biasing the random sampling distri-
bution towards the goal, we attempt to connect each newly
added state to the goal given it is within a predefined dis-
tance.

The user controls the number of attempts the RRT can run
before finding a solution, represented by N in algorithm 1.
She can also specify how many times the RRT will run, M,
which defines the upper bound on the number of paths the
algorithm can find. The full set of paths output, Σ, are then
clustered for presentation.

Path Clustering and Safe Spots - Showing all the paths
on top of each other would have been cumbersome for the
user, as there are many similar paths, and so it makes sense
to use a clustering algorithm in this case. There are two clus-
tering algorithms that we will discuss. The first one projects
the dimension t onto one heat map plane, giving the user an
overview of all the paths. The second takes into considera-
tion t in the clustering, which means that the user can explore
different paths in time by controlling t. Finally, it is possible
for the user to view a map that identifies the “safe spots” for
the player that are always free of detection.

2D Clustering - For any path σ in Σ they all leave a trace
on the base 2D map, u. From there the map is normalized
in order to clearly view the paths that have the highest value
and to see the trace of the odd paths. This view gives a global
vision of the paths and helps to see places where the user
may not want the player to go. Figure 3 shows a specific
example of this view. Although useful, a concern with this
view is that it can lead to misunderstanding of the behaviour
of the agents, since it is not obvious which paths are which
after an intersection point.

3D Clustering - Sometimes the user would like to see all
the paths at the same time evolved over time; this solves
some of the 2D clustering problems. This is done by doing
a cluster of all the paths on u at a particular t. By letting the
user control the value of t used, she can see how the paths
change over time. This allows for a closer analysis of what
a player could accomplish in the level.

Safe Spots Finder - An interesting consequence of our



analysis is that we can easily show a summary of places
where a player will never be seen by an enemy. For this we
use the following mapping for x = (x, y, t):

colour(x) =

{ Red if !χfree(x, y, t)
Magenta if ∃τ ∈ T. !χfree(x, y, τ)
Green if χfree(x, y, τ) ∀τ ∈ T

An example is shown in figure 1. In this visualization it is
clear which grid square the enemies will never see (shown
in green). This gives the user a good overall understanding
of the play space, allowing her to determine whether the safe
places are there on purpose or not.

Figure 1: Game level plane in the Unity 3D environment.
The player is represented as a blue circle, the goal as an or-
ange cross and the enemies as green opened triangles ori-
ented towards their field of view. Note the static obstacles in
black, the safe spots in green, the spots where an enemy can
see in magenta, and the enemy fields of view (and other un-
walkable spots) in red. Small light dots are waypoints used
to control enemy movements.

Interface - The mathematical goal of this work is to find
paths that avoid enemies, but the main goal of the tool is
to allow the game designer to easily understand and explore
the search space. Parametrization of the tool is thus defined
within Unity 3D as well. First, in the same panel used for
final visualization (figure 1) the user specifies the enemy
paths, fields of view, speed, etc.. Once the design of the level
is finished, further initial parametrization is given through a
separate control panel, outlined in green in figure 2. Here
the user specifies parameters related to the pre-computation
such as the grid size of the discretization and the time sample
size. Basic initialization is completed by pressing the pre-
compute map button at the bottom of the green panel.

Next, the user has to specify how the search is going to
unfold; this is controlled through the panel outlined in red in
figure 2. This input includes how many paths, M, the RRT
should try, as well as the maximum number of attempts,
N. After pressing Compute Path (bottom of the red panel),
the search computation is performed and the visualization is
constructed.

Once computed, the results can be explored in various
ways, controlled by the panel outlined in blue in figure 2.
The user can let the editor draw the last path found, the 3D

Figure 2: Tool interface panels in Unity 3D

search space, 2D or 3D heat maps, or safe spots, moving
the visualization forward, backward, or to arbitrary points in
time. This last step is the key interactive part of the tool for
the user.

Experiments & Results
This sections explores tool behaviour. First we compare the
paths found by the tool to those predicted ahead of time by a
game designer. We then recreated the very first level of MGS
to explore a fully designed space. We also used that same
space to run performance analyses under varying parameters
of our design.

Game Designer Level - During Smith’s GDC presenta-
tion on stealth gameplay, he described a number of basic
level designs for stealth. Figure 3 (a) (Smith 2006) shows
one such situation, consisting of a corridor with a guard
moving back and forth (red path). The expected player path
is shown in blue, and Smith argues that players will wait in
the alcoves to avoid the guard.

We redesigned this space in Unity 3D; figure 3 (b) shows
the resulting space and heat map of possible player move-
ments. As in Smith’s design, the guard starts on the right
(yellow dot), moving right to left and back (and repeating);
the player starts on the left with the goal to exit on the right.

The heat map solution shows that the expected behaviour
does not actually occur. While a majority of paths did head
into the first south alcove and then to the north, a large num-
ber went directly to the north alcove. None of the paths actu-
ally entered the rightmost south alcove. Detailed exploration
with our tool showed that once the guard has passed in front
of the hidden player there is no need to hide anymore, and
the player can proceed directly to the goal.

A designer might not have thought that it was possible
to reach the north alcove without having previously reached
the first south alcove, and so this may indicate weaknesses
in the level design. In order to force the players to move into
the first south alcove, the north alcove can be moved to the
right, to the point where it is too far away to reach without
being seen (figure 3 (c)). This achieves the goal of forcing
the player into the first alcove, but that ends up obviating
both the second and third alcoves. We experimented with
a number of other variations in the level design and guard
movement, and were only able to force the player to visit



Figure 3: (a) Level design proposed by Smith (Smith 2006).
(b) Heat map found from our tool. (c) Moving the north al-
cove. (d) Changing guard behaviour.

all 3 alcoves by modifying the guard’s initial position and
orientation, and having her stop and rotate/scan at multiple
points in the patrol route (figure 3 (d)). Use of our tool to de-
termine, correct, and validate the intended behaviour shows
the value of such design exploration, resulting in a better
level design and avoiding an expensive play testing cycle.1

Figure 4: Metal Gear Solid’s first level from the official strat-
egy guide.

1For an interactive demonstration of the first part of this inves-
tigation see http://y2u.be/b8gSCG0Xs_k.

Figure 5: Metal Gear Solid’s dock level’s clustered paths
found from the tool

Metal Gear Solid - This 1998 game is highly regarded
as one of the first real stealth oriented games. We used the
very first level of the game where the player is dropped in
the enemy base’s cargo dock and has to sneak around the
enemies to get to the surface; see figure 4. In order to im-
plement this level in Unity 3D we used a sketchup file found
online (Anonymous 2007). This is a complex scenario with
multiple path choices for the player. This is well represented
by the thousands of paths found by the tool, again clustered
and summarized as a heat map in figure 5. The two enemies
(yellow dots) follow the same complex paths as in the game.

The results found show that the random search prefers the
two top hallway over the bottom one. It is interesting to point
out that no path was found to go in the lower left or lower
right corners, although those locations do contain safe spots
the player may aim for as intermediate goals (see figure 1);
in the game they added objects for the player to collect at
these points, making these spots more desirable. Note also
that in the original game it was possible for the player to
jump into the water (point 3 in figure 4) once seen and wait
for enemies to lose interest. We cannot show this behaviour
directly, as we focus on computing fully unseen paths, al-
though it could be validated by ensuring no stealthy paths
exist from the starting point, but do from at least one of the
water exit points.

Performance Analysis - The interactive nature of our de-
sign hinges on the tool performing well for a reasonable
range of parametrization. We thus explore the influence of
three parameters over the time it takes to find a path and the
probability of finding a path. We ran our test in the MGS
level as it represents a real-life usage case. For every perfor-
mance data point, we ran 150 iterations and for the proba-
bility tests every data point is represented by the number of
tries the algorithm needed in order to find 150 good paths.
Results were calculated on an Intel i5 at 3.00 GHz with 8 GB
of RAM memory computer within Unity 3D 4.1.2f. While a
given parameter is varying it uses fixed values for other pa-
rameters: 30 000 attempts, 1 200 time samples, and a grid
size of 60×60.

Number of attempts - Varying the number of attempts the
RRT does before stopping has a huge influence over the per-
formance and the probability of finding a path. In figure 6
(upper left), one can see that the time taken to find a path in-



T
im

e
 (

m
s)

Number of attempts

P
ro

b
a

b
ili

ty
 o

f 
fin

d
in

g
 a

 p
a

th

Number of attempts

Grid size Time sample size

Figure 6: Performance analysis: attempts vs. time (top left), attempts vs. probability (top right), grid size vs. probability (bottom
left), and time samples vs. probability (bottom right).

creases linearly with an increase in the number of attempts,
and there is also a direct if noisy correlation with the prob-
ability of finding a path (see figure 6 (upper right)). This
behaviour is mainly due to the fact that we used an uniform
distribution over all search axes. Biasing the search toward
the final or other heuristically determined goals would likely
improve the performance significantly.

Grid size - This parameter represents a trade-off between
granularity of the simulation and size of the search space.
Fine-grain is naturally preferred, but as the space gets bigger
picking a point within the goal region χgoal gets less prob-
able with the uniform distribution picking algorithm. This
cost is clearly seen in figure 6 (lower left). Very reasonable
grid sizes turned out to be effective in our experiments, so
this is not necessarily a critical cost factor in practice, but
using a grid is cumbersome, and although it greatly simpli-
fied the initial tool design, future development will explore
use of a NavMesh within the full geometric space.

Time sample size - This defines the upper bound on the di-
mension t within the search space. The main impact of this
parameter is on the probability of finding a path. If the value
is too small the probability should decrease, as the need to
complete the level quickly likely reduces the number of pos-
sible stealth paths. Our RRT approach performs quite well
here, however, as shown in figure 6 (lower right). This sug-
gests our tool may be also useful for finding out how fast a
player may get through a level, and an appropriate visual-
ization of such results is another part of our intended further
development.

Discussion & Conclusion
In this paper we presented an AI-based tool to help game
and level designers build and understand stealth levels. Our

approach simplifies understanding of the many complex in-
teractions that affect stealthy behaviour, and enables early
detection of potential design concerns. The tool is integrated
in the Unity 3D game development framework, and so pro-
vides a ready working space for exploration within an indus-
trially relevant context.

There are a number of future directions we are exploring
related to this work. Improvements to the RRT search are
possible, for example, through use of biased search or by
using a continuous space representation. We are currently
exploring the influence of different game mechanics such
as noise, light, walking vs. running, etc., all of which are
technically straightforward to incorporate, and would make
this tool even more relevant to the reality of modern digi-
tal games. Moreover, representation is a key component of
such a tool and we would like to explore feature-based state
projections (Liu et al. 2011).

As pointed out in the introduction we are also interested
in the possibility of applying this work to the problem of
improving companion sneaking. This can be achieved via
multiple approaches. We expect performance improvements
to RRT have potential to enable online use, with some trade-
off in complexity of implementation. Our early exploration
has also shown that with sufficiently coarse clustering the
number of feasible sneak paths may not be large, and thus
pre-building a roadmap of stealthy routes for NPCs to ex-
ploit or recognize in player movements may also be possi-
ble.

Acknowledgements
This research was supported by the Fonds de recherche du
Québec - Nature et technologies, and the Natural Sciences
and Engineering Research Council of Canada.



References
Anonymous. 2007. Metal Gear Solid level
1 - Cargo Dock. http://sketchup.
google.com/3dwarehouse/details?mid=
29d5eae8d7a830261338ce2f5680446e.
Arkane Studios. 2012. Dishonored. http://www.
dishonored.com/.
Bauer, A., and Popović, Z. 2012. RRT-based game level
analysis, visualization, and visual refinement. In Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence, AIIDE 2012.
Bauer, A.; Cooper, S.; and Zoran Popović, title = Automated
redesign of local playspace properties, b. . P. s. . F. y. . . p. . .
Berchtold, S.; Bhm, C.; Keim, D.; Krebs, F.; and Kriegel,
H.-P. 2001. On optimizing nearest neighbor queries in high-
dimensional data spaces. In Proceedings of 8th International
Conference on Database Theory, ICDT 2001, 435–449.
Bethesda Game Studios. 2011. Skyrim. http://www.
elderscrolls.com/.
Bortoff, S. 2000. Path planning for UAVs. In Proceedings
of the American Control Conference, volume 1, 364–368.
Epic Games. 2008. UDK. http://www.
unrealengine.com/udk/.
Konami Digital Entertainment. 1998. Metal Gear Solid.
www.metalgearsolid.com.
LaValle, S. M., and Kuffner, Jr, J. J. 1999. Randomized
kinodynamic planning. In IEEE International Conference
on Robotics and Automation, volume 1, 473–479.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
Proceedings of the 8th International Conference on Founda-
tions of Digital Games, FDG 2013, 213–220.
Liu, Y.-E.; Andersen, E.; Snider, R.; Cooper, S.; and
Popović, Z. 2011. Feature-based projections for effective
playtrace analysis. In Proceedings of the 6th International
Conference on Foundations of Digital Games, FDG 2011,
69–76.
Looking Glass Studios. 1998. Thief: The Dark Project.
Naughty Dog. 2013. The Last of Us. http://
thelastofus.com/.
Nelson, M. J., and Mateas, M. 2009. A requirements anal-
ysis for videogame design support tools. In Proceedings of
the 4th International Conference on Foundations of Digital
Games, FDG 2009, 137–144.
Nelson, M. J. 2011. Game metrics without players: Strate-
gies for understanding game artifacts. In Proceedings of the
2011 AIIDE Workshop on Artificial Intelligence in the Game
Design Process, IDP 2011, 14–18.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In Artificial Intelligence and Interac-
tive Digital Entertainment Conference, AIIDE 2010, 168–
173.
Reddad, T., and Verbrugge, C. 2012. Geometric analysis of
maps in real-time strategy games: Measuring map quality in

a competitive setting. Technical Report GR@M-TR-2012-3,
GR@M: Games Research At McGill, School of Computer
Science, McGill University.
Shi, Y., and Crawfis, R. 2013. Optimal cover placement
against static enemy positions. In Proceedings of the 8th
International Conference on Foundations of Digital Games,
FDG 2013, 109–116.
Smith, A. M., and Mateas, M. 2011. Computational carica-
tures: Probing the game design process with AI. In Proceed-
ings of the 2011 AIIDE Workshop on Artificial Intelligence
in the Game Design Process, IDP 2011.
Smith, R. 2006. Level-building for stealth game-
play - Game Developer Conference. http:
//www.roningamedeveloper.com/Materials/
RandySmith_GDC_2006.ppt.
Unity Technologies. 2013. Unity 3D. http://unity3d.
com/.
Vandevenne, L. 2007. Lode’s computer graphics tu-
torial - raycasting. http://lodev.org/cgtutor/
raycasting.html.


